ASTM A213 specification covers seamless ferritic and austenitic steel boiler, superheater, and heat-exchanger tubes. Grades containing the letter H in their designation have requirements different from those of similar grades not containing the letter H. These different requirements provide higher creep-rupture strength than normally achievable in similar grades without these different requirements. The tubes shall be made by the seamless process and shall be either hot finished or cold finished, as specified. Grade TP347HFG shall be cold finished. Heat treatment shall be done separately and in addition to heating for hot forming. The ferritic alloy and ferritic stainless steels shall be reheated. On the other hand, austenitic stainless steel tubes shall be furnished in the heat-treated condition. Alternatively, immediately after hot forming, while the temperature of the tubes is not less than the minimum solution temperature, tubes may be individually quenched in water or rapidly cooled by other means. Tension test, hardness test, flattening test, and flaring test shall be done to each tube. Also, each tube shall be subjected to the nondestructive electric test or hydrostatic test.
1. Surface state
Austenitic steel pipe should be washed to remove the scale, when the use of bright annealing, you do not need pickling.
2. Chemical analysis of finished products
It shall be analyzed from one billet or one pipe per furnace, and the chemical composition determined accordingly shall meet the specified requirements.
3. Mechanical test and grain size
(1) Tensile test:Such as each batch of steel pipe ≤ 50 root, then take a sample for tensile test; each batch of steel pipe> 50, then two steel pipes should take two samples for tensile test.
(2) Flattening test: in each batch of a finished tube at both ends of each sample to take a flattening test, but the root can not used as a flaring sample.
(3) Flaring test: in each batch of a finished tube at both ends of a sample for a flaring test, but the root canal can not be used as a flattening sample.
(4) Hardness test: from each batch of two tubes on the sample to do Brinell or Rockwell hardness test.
(5) Water pressure test: each pipe should be hydrostatic test. When the buyer is specified, a non-destructive test may be used instead.
(6) Grain size: according to ASME E112 standard test.
Size range:
NPS 1/4'' to NPS 24''
Wall Thickness - Schedules 40 through 160, STD, XS, XXS.
Unscheduled heavy wall pipe thicknesses available up to 4 inches.
SA 213 standard specification for seamless ferritic and austenitic alloy-steel boiler,super heater,and heat-exchanger tubes.
Nansteel Manufacturing Co.,Ltd supplies a full range of the following ASTM A213 grades:ASTM A213 T5, T5b, T9, T11, T91 and T22, click to check View of ASTM A213 Dimensional Table.
ASTM A213M-09 Material Comparison Tables (ASTM →KS, JIS, DIN, BS, NBN, NF, UNI)
Mechanical properties
Note:
A Maximum, unless range or minimum is indicated. Where ellipses (...) appear in this table, there is no requirement, and analysis for the element need not be determined or reported.
B It is permissible to order T2 and T12 with a sulfur content of 0.045 max. See 16.3.
C Alternatively, in lieu of this ratio minimum, the material shall have a minimum hardness of 275 HV in the hardened condition, defined as after austenitizing and cooling to room temperature but prior to tempering.
Hardness test frequency shall be two samples of product per heat treatment lot and the hardness testing results shall be reported on the material test report.
ASTM A213 Stainless Steel Tubing Specification
ASTM A213 standard is a common used specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Super heater, and Heat-Exchanger Tubes, offering manufacture and purchasing requirements for manufactures and users, main information contain grade, size, finishes, test and other terms, the equivalent standard is ASME SA213.
ASTM A213 Ferritic And Austenitic Alloy–Steel Material Grades
ASTM A213 Specification covers material containing alloy steels, Ferritic and Austenitic steels, Austenitic stainless steel is the most used group due to their properties, common designated grades are listed, in table 1 for chemical composition, table 2 for mechanical properties and solution temperature.
Chemical composition %
Mechanical properties and solution temperature (Min, degree centigrade).
1. Surface state
Austenitic steel pipe should be washed to remove the scale, when the use of bright annealing, you do not need pickling.
2. Chemical analysis of finished products
It shall be analyzed from one billet or one pipe per furnace, and the chemical composition determined accordingly shall meet the specified requirements.
3. Mechanical test and grain size
(1) Tensile test:Such as each batch of steel pipe ≤ 50 root, then take a sample for tensile test; each batch of steel pipe> 50, then two steel pipes should take two samples for tensile test.
(2) Flattening test: in each batch of a finished tube at both ends of each sample to take a flattening test, but the root can not used as a flaring sample.
(3) Flaring test: in each batch of a finished tube at both ends of a sample for a flaring test, but the root canal can not be used as a flattening sample.
(4) Hardness test: from each batch of two tubes on the sample to do Brinell or Rockwell hardness test.
(5) Water pressure test: each pipe should be hydrostatic test. When the buyer is specified, a non-destructive test may be used instead.
(6) Grain size: according to ASME E112 standard test.
Size range:
NPS 1/4'' to NPS 24''
Wall Thickness - Schedules 40 through 160, STD, XS, XXS.
Unscheduled heavy wall pipe thicknesses available up to 4 inches.
SA 213 standard specification for seamless ferritic and austenitic alloy-steel boiler,super heater,and heat-exchanger tubes.
Nansteel Manufacturing Co.,Ltd supplies a full range of the following ASTM A213 grades:ASTM A213 T5, T5b, T9, T11, T91 and T22, click to check View of ASTM A213 Dimensional Table.
ASTM A213M-09 Material Comparison Tables (ASTM →KS, JIS, DIN, BS, NBN, NF, UNI)
Grade | UNS Designation | C | Mn | P | S | Si |
T2 | K11547 | 0.10–0.20 | 0.30–0.61 | 0.025 | 0.025B | 0.10–0.30 |
T5 | K41545 | 0.15 | 0.30–0.60 | 0.025 | 0.025 | 0.5 |
T5b | K51545 | 0.15 | 0.30–0.60 | 0.025 | 0.025 | 1.00–2.00 |
T5c | K41245 | 0.12 | 0.30–0.60 | 0.025 | 0.025 | 0.5 |
T9 | K90941 | 0.15 | 0.30–0.60 | 0.025 | 0.025 | 0.25–1.00 |
T11 | K11597 | 0.05–0.15 | 0.30–0.60 | 0.025 | 0.025 | 0.50–1.00 |
T12 | K11562 | 0.05–0.15 | 0.30–0.61 | 0.025 | 0.025B | 0.5 |
T17 | K12047 | 0.15–0.25 | 0.30–0.61 | 0.025 | 0.025 | 0.15–0.35 |
T21 | K31545 | 0.05–0.15 | 0.30–0.60 | 0.025 | 0.025 | 0.50–1.00 |
T22 | K21590 | 0.05–0.15 | 0.30–0.60 | 0.025 | 0.025 | 0.5 |
T23 | K40712 | 0.04–0.10 | 0.10–0.60 | 0.03 | 0.01 | 0.5 |
T24 | K30736 | 0.05–0.10 | 0.30–0.70 | 0.02 | 0.01 | 0.15–0.45 |
T36 | K21001 | 0.10–0.17 | 0.80–1.20 | 0.03 | 0.025 | 0.25–0.50 |
T91 | K90901 | 0.07–0.14 | 0.30–0.60 | 0.02 | 0.01 | 0.20–0.50 |
T92 | K92460 | 0.07–0.13 | 0.30–0.60 | 0.02 | 0.01 | 0.5 |
T122 | K91271 | 0.07–0.14 | 0.7 | 0.02 | 0.01 | 0.5 |
T911 | K91061 | 0.09–0.13 | 0.30–0.60 | 0.02 | 0.01 | 0.10–0.50 |
Grade | UNS Designation | Vana- | Boron | Niobium | Nitrogen | Aluminum | Tungsten |
dium | |||||||
T2 | K11547 | ... | ... | ... | ... | ... | ... |
T5 | K41545 | ... | ... | ... | ... | ... | ... |
T5b | K51545 | ... | ... | ... | ... | ... | ... |
T5c | K41245 | ... | ... | ... | ... | ... | ... |
T9 | K90941 | ... | ... | ... | ... | ... | ... |
T11 | K11597 | ... | ... | ... | ... | ... | ... |
T12 | K11562 | ... | ... | ... | ... | ... | ... |
T17 | K12047 | 0.15 | ... | ... | ... | ... | ... |
T21 | K31545 | ... | ... | ... | ... | ... | ... |
T22 | K21590 | ... | ... | ... | ... | ... | ... |
T23 | K40712 | 0.20–0.30 | 0.0010–0.006 | 0.02–0.08 | 0.015 | 0.03 | 1.45–1.75 |
T24 | K30736 | 0.20–0.30 | 0.0015–0.007 | ... | 0.012 | 0.02 | ... |
T36 | K21001 | 0.02 | ... | 0.015–0.045 | 0.02 | 0.05 | ... |
T91 | K90901 | 0.18–0.25 | ... | 0.06–0.10 | 0.030–0.07 | 0.02 | ... |
T92 | K92460 | 0.15–0.25 | 0.001–0.006 | 0.04–0.09 | 0.030–0.07 | 0.02 | 1.5–2.00 |
T122 | K91271 | 0.15–0.30 | 0.0005–0.005 | 0.04–0.10 | 0.040– | 0.02 | 1.50–2.50 |
T911 | K91061 | 0.18–0.25 | 0.0003–0.006 | 0.06–0.10 | 0.040–0.09 | 0.02 | 0.90–1.10 |
Mechanical properties
Grade | Tensile strength | Yield point(Mpa) | Elongation(%) | Impact(J) | Hardness |
(Mpa) | not less than | not less than | not less than | not less than | |
A213 T2/SA213 T2 | ≥415 | 205 | " | 85HRB | |
A213 T11/SA213 T11 | ≥415 | 205 | " | 85HRB | |
A213 T22/SA213 T22 | ≥415 | 205 | " | 85HRB | |
A213 T23/SA213 T23 | ≥510 | 400 | 20 | " | 97HRB |
A213 T24/SA213 T24 | ≥585 | 415 | 20 | " | 25HRB |
A213 T91/SA213 T91 | ≥585 | 415 | 20 | " | 25HRB |
A213 T911/SA213 T911 | ≥620 | 440 | 20 | " | 25HRB |
A213 T22/SA213 T92 | ≥620 | 440 | 20 | " | 25HRB |
A213 T122/SA213 T122 | ≥620 | 400 | 20 | 25HRB | |
TP304H | ≥515 | 205 | 35 | 90HRB | |
TP316H | ≥515 | 205 | 35 | 90HRB | |
TP321H | ≥515 | 205 | 35 | 90HRB | |
TP347H | ≥515 | 205 | 35 | 90HRB | |
S30432 | ≥590 | 235 | 35 | 95HRB | |
TP310HCbN | ≥655 | 295 | 30 | 100HRB |
A Maximum, unless range or minimum is indicated. Where ellipses (...) appear in this table, there is no requirement, and analysis for the element need not be determined or reported.
B It is permissible to order T2 and T12 with a sulfur content of 0.045 max. See 16.3.
C Alternatively, in lieu of this ratio minimum, the material shall have a minimum hardness of 275 HV in the hardened condition, defined as after austenitizing and cooling to room temperature but prior to tempering.
Hardness test frequency shall be two samples of product per heat treatment lot and the hardness testing results shall be reported on the material test report.
ASTM A213 Stainless Steel Tubing Specification
ASTM A213 standard is a common used specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Super heater, and Heat-Exchanger Tubes, offering manufacture and purchasing requirements for manufactures and users, main information contain grade, size, finishes, test and other terms, the equivalent standard is ASME SA213.
ASTM A213 Ferritic And Austenitic Alloy–Steel Material Grades
ASTM A213 Specification covers material containing alloy steels, Ferritic and Austenitic steels, Austenitic stainless steel is the most used group due to their properties, common designated grades are listed, in table 1 for chemical composition, table 2 for mechanical properties and solution temperature.
Chemical composition %
Grade | C | Si | Mn | Cr | Ni | Mo | S | P |
TP304 | 0,08 | 1,0 | 2 | 18 – 20 | 8 – 11 | – | 0,03 | 0,045 |
TP304L | 0,035 | 1,0 | 2 | 18 – 20 | 8 – 12 | – | 0,03 | 0,045 |
TP316 | 0,08 | 1,0 | 2 | 16 – 18 | 11 – 14 | 2 – 3 | 0,03 | 0,045 |
TP316L | 0,035 | 1,0 | 2 | 16 – 18 | 10 – 14 | 2 – 3 | 0,03 | 0,045 |
TP321 | 0,08 | 1,0 | 2 | 17 – 19 | 9 – 12 | – | 0,03 | 0,045 |
Mechanical properties and solution temperature (Min, degree centigrade).
Grade | Tensile Strength(Mpa) | Yield Point(Mpa) | Elongation(%) | Hardness(HRB) | Solution Temperature |
TP304 | 515 | 205 | 35 | 90 | 1040 |
TP304L | 485 | 170 | 35 | 90 | 1040 |
TP316 | 515 | 205 | 35 | 90 | 1040 |
TP316L | 485 | 170 | 35 | 90 | 1040 |
TP321 | 515 | 205 | 35 | 90 | 1040 |